Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

R.A. Barnitt
National Renewable Energy Laboratory

D. Chernich and M. Burnitzki
California Air Resources Board

A. Oshinuga and M. Miyasato
South Coast Air Quality Management District

E. Lucht
Thermo King Corporation

D. van der Merwe
SasolChevron Consulting Limited

P. Schaberg
Sasol Technology

Presented at the 2009 SAE Powertrain, Fuels, and Lubricants Meeting
_San Antonio, Texas*
_November 2–4, 2009*
NOTICE

The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste
Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

Robb A. Barnitt
National Renewable Energy Laboratory

Donald Chernich and Mark Burnitzki
California Air Resources Board

Adewale Oshinuga and Matt Miyasato
South Coast Air Quality Management District

Erich Lucht
Thermo King Corporation

Douw van der Merwe
SasolChevron Consulting Limited

Paul Schaberg
Sasol Technology

ABSTRACT
A novel in situ method was performed for measuring emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. The test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. The exhaust configurations were a stock original equipment manufacturer (OEM) muffler and a Thermo King pDPF diesel particulate filter. The two TRU engine operating speeds were high and low, as controlled by the TRU user interface.

Test results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine operating speeds. Separately, the application of a Thermo King pDPF reduced regulated emissions, in some cases almost entirely. Finally, the application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine operating speed, but with an increase in oxides of nitrogen (NOx) at low engine speed.

INTRODUCTION
Transport refrigeration units (TRUs) are refrigeration systems designed to refrigerate or heat perishable products that are transported in various containers, including semi-trailers (Figure 1), box trucks, vans, shipping containers, and rail cars.

Figure 1. TRU Mounted on Trailer Nose
TRUs are powered predominantly by diesel internal combustion engines. While TRU engines are relatively small, ranging from 9 to 36 horsepower (hp), significant numbers of vehicles with these engines congregate at distribution centers, truck stops, and other facilities, posing significant health risks to those who live and work nearby.

The California Air Resources Board (CARB) estimates that there are 40,200 TRUs operating in California at any given time, with an annual diesel consumption of more than 20 million gallons. CARB also estimates that TRU particulate matter (PM) and nitrogen oxides (NOx) emissions are 2 and 20 tons per day (tpd), respectively. The PM emission contribution from TRUs is estimated at 2.6% of total diesel PM emissions. PM emissions are projected to increase to about 2.5 tpd in 2010 and to more than 3 tpd by 2020.

The nature of the TRU emissions inventory, as well as CARB’s identification of diesel PM as a toxic air contaminant, led to CARB’s adoption of an Airborne Toxic Control Measure (ATCM) for TRUs and TRU generator sets on February 26, 2004.\(^1\)

The ATCM includes a phased compliance schedule based upon TRU model year; older units require compliance sooner.\(^2\) The three principal methods of compliance include the following:

1. Replacing the existing TRU engine with a certified engine meeting applicable nonroad/off-road emissions standards
2. Equipping the engine with a required level of Verified Diesel Emission Control Strategy (VDECS)
3. Operating a TRU or TRU gen set meeting one of several alternative technology options.

Alternative technology options include fuel cells, electric standby, cryogenic temperature control systems, alternative fuels with a VDECS, and alternative diesel fuels that have been verified as a VDECS. Examples of alternative diesel fuels include biodiesel and gas-to-liquid (GTL) synthetic diesel. In on-road engines, GTL diesel fuel has been shown to reduce PM emissions without accompanying increases in other regulated emissions.\(^3,4\)

There have been few studies on TRU emissions and performance with a VDECS or alternative technologies.\(^5,6,7\) Nevertheless, many parties are interested in the operability of and emissions from TRUs using various combinations of VDECS and alternative technologies:

- TRU end users (fleets) in need of operability data
- Regulators in need of emissions data
- TRU original equipment manufacturers (OEMs) in need of emissions data for compliance and operability data for warranties.

OBJECTIVES

This paper reports on one component of a larger collaborative project. The primary objective of the activities reported here was to measure the fuel consumption and emissions of a TRU fueled with GTL diesel or CARB ultra low sulfur diesel and equipped with either a Level 2 VDECS or the stock OEM muffler. Secondary objectives were to evaluate fuel consumption impacts due to backpressure with the Thermo King diesel particulate filter, known as pDPF, and to evaluate pDPF performance on equipment outside the terms of its CARB verification.

APPROACH

INTRODUCTION – This project was conducted under a cooperative research and development agreement between the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) and the South Coast Air Quality Management District (SCAQMD). Funding was supplied by SCAQMD and the Advanced Petroleum-Based Fuels Task sponsored by DOE’s Vehicle Technologies Program. Additional project partners and their roles are listed in Table 1.

<table>
<thead>
<tr>
<th>Project Partner</th>
<th>Project Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>NREL</td>
<td>Co-funder, project lead</td>
</tr>
<tr>
<td>SCAQMD</td>
<td>Co-funder</td>
</tr>
<tr>
<td>CARB</td>
<td>Emissions testing</td>
</tr>
<tr>
<td>Thermo King</td>
<td>VDECS, engine teardown</td>
</tr>
<tr>
<td>SasolChevron</td>
<td>GTL diesel test fuel for in-use evaluation and emissions testing</td>
</tr>
</tbody>
</table>

SYSTEM DESCRIPTION – The subject TRU is a model year 2004 Thermo King brand SB-200 30 model, mounted to a 48-foot trailer. The engine is a Yanmar 2.2 liter, four-cylinder in-line diesel. The engine utilizes mechanically direct injection and is naturally aspirated.

The engine shaft power is applied through a direct drive coupling to a refrigeration compressor off the flywheel. On the front of the engine, a belt system drives the alternator and an engine compartment cooling fan. The TRU operates at two engine speeds (1450 and 2200 rpm) which are mechanically governed by the fuel injection pump. A general TRU schematic is shown in Figure 2. The enclosure skins, electrical controls, belts, and blower are not shown.
EXHAUST AFTERTREATMENT – The Level 2 VDECS used in this testing is a Thermo King pDPF. The Thermo King pDPF was verified by CARB as a Level 2 device (achieves a greater than or equal to 50% reduction in diesel PM). Additionally, the Thermo King pDPF was found not to increase NO₂ emissions more than 20% compared with the baseline, indicating compliance with the 2009 NO₂ emissions limit (13 CCR section 2706(a)) and thus obtaining designation as a “Plus” system per Section 2702(f). The CARB verification cited is for engine model years 2002 and older; the TRU unit tested is a model year 2004.

The principle of operation of the Thermo King pDPF is a flow-through design, utilizing knitted wire elements that provide a tortuous path. Passive regeneration of the soot is triggered by a proprietary catalyst on the mesh elements. The pDPF is designed to regenerate when the exhaust temperature is in the 230°C to 450°C range. A simple control system increases engine speed when a backpressure limit is reached to increase exhaust temperature and initiate soot regeneration. The wire mesh element is shown in Figure 3.

TEST FUELS – Test fuels were CARB ultra low sulfur diesel and GTL diesel. CARB diesel was supplied by a local distributor of Chevron Products Company. This fuel was not analyzed but was presumed to meet the fuel specification for CARB diesel. CARB diesel is characterized by a maximum 10% by volume aromatics and minimum cetane number of 48. SasolChevron supplied GTL diesel for emissions testing. This fuel was characterized by zero aromatic content and a cetane number of 81. The appendix presents both the GTL diesel production lot analytical results and CARB diesel fuel specification for comparison.

EMISSIONS TESTING – TRU emissions and fuel consumption measurements were conducted at the CARB Stockton laboratory (SL). The CARB SL is a heavy-duty vehicle emissions laboratory configured to test heavy-duty diesel-powered vehicles on a twin roll, 1,100 hp chassis dynamometer. In addition to wheeled vehicle tests, the SL can also perform emissions measurements on other utility equipment, such as TRUs and transportable air compressors.

All gaseous emissions were measured in the raw exhaust using conventional laboratory-grade analyzers manufactured by California Analytical Instruments. These included a heated flame ionization detector (HFID) for total hydrocarbon (THC) measurements, two heated chemiluminescence analyzers for total NOₓ and NO measurements, an infrared detector for CO and CO₂ measurements, and a paramagnetic analyzer for O₂ measurements. Air flow through the engine was measured using a calibrated air turbine installed on the engine air intake.
PM was sampled by drawing a separate exhaust stream through a Sierra BG-2 partial flow sampling system (PFSS). The sampling stream temperature was held below 52°C. PM samples were collected using a variety of dilution ratios and sampling times (depending on the test mode) on primary and secondary 90 mm T60A20 filter media. The filters were preconditioned in a temperature and humidity-controlled weighing room before and after sample collection and then measured gravimetrically on a Mettler Toledo UMX 2 microbalance.

Fuel consumption was measured using a gravimetric fuel measurement system integrated with a data acquisition system; both are manufactured by Superflow, Inc. A 22-gallon fuel can suspended by a torque cell provides real-time fuel consumption data. Both fuel supply and return lines are routed to the fuel can. Return fuel is passed through a water-to-fuel heat exchanger prior to being returned to the can. When in operation, the test equipment’s fuel tank is bypassed completely, operating only on fuel supplied by the can.

Calibration is obtained through the use of certified weights placed on a purpose-designed stand. American Petroleum Institute (API) specific gravity is calculated by filling and emptying the can. The known volume, measured weight, and measured fuel temperature are used by the Superflow data acquisition system to calculate the API value, which is displayed as a data channel. Additional verification of the API value is obtained with the use of a temperature-corrected hydrometer.

The TRU was tested in situ as a complete operational unit. Unlike a certification test, the engine was not removed for testing on an engine dynamometer. The unaltered TRU was controlled using the Thermo King user interface, which controls the load placed on the diesel engine by varying the cooling command to the refrigerant compressor. Steady-state conditions were achieved by cooling the trailer box to a low temperature and then adjusting the cooling set point upward, resulting in a stabilized and repeatable engine load. This stabilized mode was verified by monitoring several parameters as a surrogate for direct load measurement. These stabilized load verification parameters included the refrigerant compressor high and low side pressures and fuel consumption. Continuous gaseous and engine operating conditions were recorded, and multiple PM filter samples were taken during the stabilized operation.

TEST MATRIX – Testing involved two fuels, two engine operating speeds, and two exhaust configurations. A total of eight combinations were tested with duplicate test runs (Table 2).

![Figure 4. Steady-State Test Conditions for Engine Speed and Fuel Consumption](image)
Gaseous emissions results also indicate that steady-state conditions were achieved using this test methodology (Figure 6). Downward spikes at consistent intervals are representative of emissions bench air injections and visually separate test runs.

Two runs per test configuration were conducted, and the results were averaged (Table 3). Two NOx analyzers were used to measure total NOx and NO. The NO2 and the ratio of NO/NO2 were calculated and are also presented in Table 3. The second NOx analyzer failed during test runs of GTL diesel fuel with the pDPF; NO results are designated as not measured (NM).

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Engine Speed</th>
<th>Exhaust</th>
<th>NOx (g/hr)</th>
<th>NO (g/hr)</th>
<th>NO2 (g/hr)</th>
<th>NO/NO2</th>
<th>CO (g/hr)</th>
<th>CO2 (g/hr)</th>
<th>THC (g/hr)</th>
<th>PM (g/hr)</th>
<th>Fuel Consumption (gal/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARB</td>
<td>High</td>
<td>Muffler</td>
<td>123.34</td>
<td>104.37</td>
<td>18.96</td>
<td>5.50</td>
<td>61.80</td>
<td>17,975</td>
<td>37.28</td>
<td>17.60</td>
<td>1.31</td>
</tr>
<tr>
<td>GTL</td>
<td>High</td>
<td>Muffler</td>
<td>107.49</td>
<td>90.11</td>
<td>17.38</td>
<td>5.18</td>
<td>49.94</td>
<td>17,834</td>
<td>29.21</td>
<td>12.89</td>
<td>1.35</td>
</tr>
<tr>
<td>CARB</td>
<td>High</td>
<td>pDPF</td>
<td>123.95</td>
<td>92.08</td>
<td>31.87</td>
<td>2.89</td>
<td>0.73</td>
<td>19,715</td>
<td>1.56</td>
<td>13.98</td>
<td>1.33</td>
</tr>
<tr>
<td>GTL</td>
<td>High</td>
<td>pDPF</td>
<td>108.97</td>
<td>NM</td>
<td>NA</td>
<td>NA</td>
<td>0.21</td>
<td>18,599</td>
<td>1.08</td>
<td>9.13</td>
<td>1.28</td>
</tr>
<tr>
<td>CARB</td>
<td>Low</td>
<td>Muffler</td>
<td>53.89</td>
<td>41.67</td>
<td>12.21</td>
<td>3.41</td>
<td>30.77</td>
<td>6,222</td>
<td>24.92</td>
<td>6.49</td>
<td>0.56</td>
</tr>
<tr>
<td>GTL</td>
<td>Low</td>
<td>Muffler</td>
<td>45.47</td>
<td>34.05</td>
<td>11.42</td>
<td>2.98</td>
<td>25.40</td>
<td>5,796</td>
<td>14.22</td>
<td>3.87</td>
<td>0.53</td>
</tr>
<tr>
<td>CARB</td>
<td>Low</td>
<td>pDPF</td>
<td>52.38</td>
<td>45.58</td>
<td>6.80</td>
<td>6.70</td>
<td>10.40</td>
<td>6,423</td>
<td>17.50</td>
<td>2.77</td>
<td>0.51</td>
</tr>
<tr>
<td>GTL</td>
<td>Low</td>
<td>pDPF</td>
<td>59.88</td>
<td>NM</td>
<td>NA</td>
<td>NA</td>
<td>0.69</td>
<td>5,532</td>
<td>5.94</td>
<td>1.81</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Emissions and fuel consumption duplicate test run results are compared across the test matrix in Figures 7–12.
Compared with the baseline condition of CARB diesel and a stock muffler, significant reductions of gaseous emissions and PM are possible when utilizing GTL diesel, a Thermo King pDPF, or combining the two approaches. Table 4 presents the percentage decreases measured in each case, and additional discussion follows.
Table 4. Emissions Reductions with GTL Diesel and/or Thermo King pDPF

<table>
<thead>
<tr>
<th>Engine Speed</th>
<th>NOx</th>
<th>NO</th>
<th>NO2</th>
<th>CO</th>
<th>CO2</th>
<th>THC</th>
<th>PM</th>
<th>Fuel Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reductions with GTL diesel as replacement for CARB diesel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>-12.8%</td>
<td>-13.7%</td>
<td>-8.3%</td>
<td>-19.2%</td>
<td>-0.8%</td>
<td>-21.7%</td>
<td>-26.8%</td>
<td>+2.9%</td>
</tr>
<tr>
<td>Low</td>
<td>-15.6%</td>
<td>-18.3%</td>
<td>-6.5%</td>
<td>-17.4%</td>
<td>-6.8%</td>
<td>-42.9%</td>
<td>-40.4%</td>
<td>-6.4%</td>
</tr>
<tr>
<td>Reductions with pDPF as replacement for muffler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>+0.5%</td>
<td>-11.8%</td>
<td>+68.1%</td>
<td>-98.8%</td>
<td>+9.7%</td>
<td>-95.8%</td>
<td>-20.6%</td>
<td>+2.0%</td>
</tr>
<tr>
<td>Low</td>
<td>-2.8%</td>
<td>+9.4%</td>
<td>-44.3%</td>
<td>-66.2%</td>
<td>+3.2%</td>
<td>-29.8%</td>
<td>-57.3%</td>
<td>-9.3%</td>
</tr>
<tr>
<td>Reductions with both GTL diesel and pDPF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>-11.6%</td>
<td>NM</td>
<td>NA</td>
<td>-99.7%</td>
<td>+3.5%</td>
<td>-97.1%</td>
<td>-48.1%</td>
<td>-2.2%</td>
</tr>
<tr>
<td>Low</td>
<td>+11.1%</td>
<td>NM</td>
<td>NA</td>
<td>-97.8%</td>
<td>-11.1%</td>
<td>-76.2%</td>
<td>-72.1%</td>
<td>-14.4%</td>
</tr>
</tbody>
</table>

Note: Figures preceded by a minus sign (e.g., -12.8%) denote a reduction from the baseline, while those preceded by a plus sign (e.g., +2.9%) denote an increase.

Reductions in PM are the primary focus of the CARB ATCM and ultimately of this project. Replacing CARB diesel with GTL diesel yielded PM reductions of 27%–40%, depending on engine speed. Replacing the OEM muffler with a Thermo King pDPF resulted in PM reductions of 21%–57%, depending on engine speed. The application of both GTL diesel fuel and a Level 2 VDECS resulted in impressive, if not purely additive, reductions of 21% and 22%–43%, respectively, depending on engine speed.

Reductions of CO and THC were expected with GTL diesel and generally expected with the pDPF because of its catalyzed nature. Replacing CARB diesel with GTL diesel yielded CO and THC reductions of 17%–19% and 22%–43%, respectively, depending on engine speed. Replacing the OEM muffler with a Thermo King pDPF resulted in CO and THC reductions of 66%–99% and 30%–96%, respectively, depending on engine speed. The application of both GTL diesel fuel and Level 2 VDECS resulted in dramatic CO and THC reductions of 98%–99% and 76%–97%, respectively, depending on engine speed.

Differences in measured fuel consumption were observed across the test configurations. These differences were generally unexpected in terms of both magnitude and direction. However, raw fuel consumption values (Table 3) are generally small, in the hundredths of a gallon per hour. These differences are likely within the measurement error of the experimental equipment. It is unlikely that these differences were a function of the TRU or GTL diesel fuel. The TRU tested utilizes an engine with mechanically direct fuel injection. Thus, there were no subtle changes in fuel injection volume and timing due to the application of GTL diesel, with its significantly higher cetane number and lower density.

CONCLUSIONS

These in situ tests characterize the emissions from integrated TRUs rather than just the diesel engine. This methodology may yield relevant real-world TRU emissions profiles, providing better insight into the contribution of TRUs to emissions inventories. Integration of emissions over a period of time, including relative weighting of high and low idle times, is a logical extension to this work.

The use of GTL diesel fuel as a replacement to CARB diesel fuel can reduce gaseous emissions and PM at both high and low engine speeds. Replacement of the...
stock muffler with a Thermo King pDPF can also reduce some gaseous emissions and PM at both high and low TRU engine speeds. Compound reductions, significant in the case of CO and THC, were realized in combining GTL diesel fuel with the Thermo King pDPF.

While there is no concrete explanation for the relative directional inversion of measured NOx and calculated NO2 and NO/NO2 ratio with a pDPF test condition, it is likely that low engine speed operation does not sufficiently raise the catalyst temperature to enable light off and high efficiency oxidation. However, further investigation is warranted.

ACKNOWLEDGMENTS

The primary author wishes to thank the U.S. Department of Energy’s Vehicle Technologies Program and Program Manager Kevin Stork. Also, the authors wish to acknowledge the contributions of Wayne Sobieralski, Roelof Riemersma, Robert Ianni, Tullie Flower and Harlan Quan at CARB. Finally, the authors wish to acknowledge the generous assistance of Rockview Farms for the loan of the TRU and trailer for testing.

REFERENCES

CONTACT

Robb Barnitt is a Senior Project Engineer at NREL. He can be reached at robb.barnitt@nrel.gov.

ACRONYMS

API: American Petroleum Institute
ATCM: Airborne Toxic Control Measure
CARB: California Air Resources Board
CO: carbon monoxide
CO2: carbon dioxide
DOE: U.S. Department of Energy
g/hr: grams per hour
gal/hr: gallons per hour
gph: gallons per hour
GTL: gas-to-liquid
HFID: heated flame ionization detector
hp: horsepower
mm: millimeter
NA: not applicable
NM: not measured
NO: nitric oxide
NOx: oxides of nitrogen
NO2: nitrogen dioxide
NREL: National Renewable Energy Laboratory
OEM: original equipment manufacturer
O2: oxygen
PFSS: partial flow sampling system
PM: particulate matter
psi: pounds per square inch
rpm: revolutions per minute
SCAQMD: South Coast Air Quality Management District
SL: Stockton laboratory
tpd: tons per day
THC: total hydrocarbons
TRU: transport refrigeration unit
VDECS: verified diesel emission control strategy
<table>
<thead>
<tr>
<th>Component</th>
<th>Method</th>
<th>GTL Diesel</th>
<th>CARB Diesel (Specification)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Acid</td>
<td>ASTM D974</td>
<td><0.001</td>
<td></td>
<td>mgKOH/g</td>
</tr>
<tr>
<td>Appearance</td>
<td>ASTM D4176</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Di Aromatic H/C</td>
<td>IP 391/95</td>
<td>0</td>
<td></td>
<td>mass %</td>
</tr>
<tr>
<td>Mono Aromatic H/C</td>
<td></td>
<td>0</td>
<td></td>
<td>mass %</td>
</tr>
<tr>
<td>Poly Aromatic H/C</td>
<td></td>
<td>0</td>
<td>1.4 max</td>
<td>mass %</td>
</tr>
<tr>
<td>Total Aromatic H/C</td>
<td></td>
<td>0</td>
<td>10 max</td>
<td>mass %</td>
</tr>
<tr>
<td>Tri Aromatic H/C</td>
<td></td>
<td>0</td>
<td></td>
<td>mass %</td>
</tr>
<tr>
<td>Ash</td>
<td>ASTM D482</td>
<td><0.01</td>
<td></td>
<td>mass %</td>
</tr>
<tr>
<td>Carbon Residue</td>
<td>ASTM D4530</td>
<td>0.01</td>
<td></td>
<td>mass %</td>
</tr>
<tr>
<td>Cetane Number</td>
<td>ASTM D613</td>
<td>81.0</td>
<td>48 min</td>
<td></td>
</tr>
<tr>
<td>CFPP</td>
<td>ASTM D6371</td>
<td>-6</td>
<td></td>
<td>degC</td>
</tr>
<tr>
<td>Cloud Point</td>
<td>ASTM D2500</td>
<td>-4.4</td>
<td>2.2</td>
<td>degC</td>
</tr>
<tr>
<td>Colour Lovibond</td>
<td>ASTM D1500</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Contaminants</td>
<td>EN ISO 12662</td>
<td>3.1</td>
<td></td>
<td>mg/kg</td>
</tr>
<tr>
<td>Copper Corrosion</td>
<td>ASTM D130</td>
<td>1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density @ 20</td>
<td>ASTM D4052</td>
<td>0.7708</td>
<td></td>
<td>kg/l</td>
</tr>
<tr>
<td>10%</td>
<td>ASTM D86</td>
<td>208.6</td>
<td>205 - 255</td>
<td>degC</td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td>222.0</td>
<td>degC</td>
<td></td>
</tr>
<tr>
<td>30%</td>
<td></td>
<td>235.5</td>
<td>degC</td>
<td></td>
</tr>
<tr>
<td>40%</td>
<td></td>
<td>251.0</td>
<td>degC</td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td></td>
<td>199.1</td>
<td>degC</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td>267.6</td>
<td>245 - 295</td>
<td>degC</td>
</tr>
<tr>
<td>60%</td>
<td></td>
<td>284.5</td>
<td>degC</td>
<td></td>
</tr>
<tr>
<td>70%</td>
<td></td>
<td>301.1</td>
<td>degC</td>
<td></td>
</tr>
<tr>
<td>80%</td>
<td></td>
<td>319.3</td>
<td>degC</td>
<td></td>
</tr>
<tr>
<td>90%</td>
<td></td>
<td>340.2</td>
<td>290 - 320</td>
<td>degC</td>
</tr>
<tr>
<td>95%</td>
<td></td>
<td>354.2</td>
<td>degC</td>
<td></td>
</tr>
<tr>
<td>FBP</td>
<td></td>
<td>362.5</td>
<td>degC</td>
<td></td>
</tr>
<tr>
<td>IBP</td>
<td></td>
<td>175.7</td>
<td>170 - 215</td>
<td>degC</td>
</tr>
<tr>
<td>Recovery</td>
<td></td>
<td>99.0</td>
<td>vol %</td>
<td></td>
</tr>
<tr>
<td>Flash Point</td>
<td>ASTM D93</td>
<td>68</td>
<td>54 min</td>
<td>degC</td>
</tr>
<tr>
<td>Lubricity</td>
<td>ASTM D6079</td>
<td>349</td>
<td></td>
<td>WSD micrometre</td>
</tr>
<tr>
<td>Oxidation Stability</td>
<td>ASTM D2274</td>
<td>0.4</td>
<td></td>
<td>mg/100ml</td>
</tr>
<tr>
<td>Total Sulphur</td>
<td>ASTM D5453</td>
<td>4</td>
<td>15 max</td>
<td>mg/kg</td>
</tr>
<tr>
<td>Viscosity @ 40 Kin</td>
<td>ASTM D445</td>
<td>2.54</td>
<td>2.0 - 4.1</td>
<td>cSt</td>
</tr>
</tbody>
</table>
TITLE AND SUBTITLE

Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

AUTHOR(S)

R.A. Barnitt, National Renewable Energy Laboratory; D. Chernich and M. Burnitzki, California Air Resources Board; A. Oshinuga and M. Miyasato, South Coast Air Quality Management District; E. Lucht, Thermo King Corporation; D. van der Merwe, SasolChevron Consulting Limited; and P. Schaberg, Sasol Technology

ABSTRACT (Maximum 200 Words)

A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

SUBJECT TERMS

diesel engines; diesel engine emissions; gas-to-liquid diesel fuels; transport refrigeration units; TRUs; diesel particulate filters; DPFs